skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gatti, M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We present the photometric redshift characterization and calibration for the Dark Energy Camera All Data Everywhere (DECADE) weak lensing dataset: a catalog of 107 million galaxies observed by the Dark Energy Camera (DECam) in the northern Galactic cap. The redshifts are estimated from a combination of wide-field photometry, deep-field photometry with associated redshift estimates, and a transfer function between the wide field and deep field that is estimated using a source injection catalog. We construct four tomographic bins for the galaxy catalog, and estimate the redshift distribution, n ( z ) , within each one using the Self-organizing Map Photo-Z (SOMPZ) methodology. Our estimates include the contributions from sample variance, zeropoint calibration uncertainties, and redshift biases, as quantified for the deep-field dataset. The total uncertainties on the mean redshifts are σ z 0.01 . The SOMPZ estimates are then compared to those from the clustering redshift method, obtained by cross-correlating our source galaxies with galaxies in spectroscopic surveys, and are shown to be consistent with each other. 
    more » « less
    Free, publicly-accessible full text available October 22, 2026
  2. We present the pipeline for the cosmic shear analysis of the Dark Energy Camera All Data Everywhere (DECADE) weak lensing dataset: a catalog consisting of 107 million galaxies observed by the Dark Energy Camera (DECam) in the northern Galactic cap. The catalog derives from a large number of disparate observing programs and is therefore more inhomogeneous across the sky compared to existing lensing surveys. First, we use simulated data-vectors to show the sensitivity of our constraints to different analysis choices in our inference pipeline, including sensitivity to residual systematics. Next we use simulations to validate our covariance modeling for inhomogeneous datasets. Finally, we show that our choices in the end-to-end cosmic shear pipeline are robust against inhomogeneities in the survey, by extracting relative shifts in the cosmology constraints across different subsets of the footprint/catalog and showing they are all consistent within 1 σ to 2 σ . This is done for forty-six subsets of the data and is carried out in a fully consistent manner: for each subset of the data, we re-derive the photometric redshift estimates, shear calibrations, survey transfer functions, the data vector, measurement covariance, and finally, the cosmological constraints. Our results show that existing analysis methods for weak lensing cosmology can be fairly resilient towards inhomogeneous datasets. This also motivates exploring a wider range of image data for pursuing such cosmological constraints. 
    more » « less
    Free, publicly-accessible full text available October 22, 2026
  3. We present the Dark Energy Camera All Data Everywhere (DECADE) weak lensing dataset: a catalog of 107 million galaxies observed by the Dark Energy Camera (DECam) in the northern Galactic cap. This catalog was assembled from public DECam data including survey and standard observing programs. These data were consistently processed with the Dark Energy Survey Data Management pipeline as part of the DECADE campaign and serve as the basis of the DECam Local Volume Exploration survey (DELVE) Early Data Release 3 (EDR3). We apply the Metacalibration measurement algorithm to generate and calibrate galaxy shapes. After cuts, the resulting cosmology-ready galaxy shape catalog covers a region of 5,412 deg2 with an effective number density of 4.59 arcmin−2. The coadd images used to derive this data have a median limiting magnitude of r=23.6, i=23.2, and z=22.6, estimated at S/N=10 in a 2 arcsecond aperture. We present a suite of detailed studies to characterize the catalog, measure any residual systematic biases, and verify that the catalog is suitable for cosmology analyses. In parallel, we build an image simulation pipeline to characterize the remaining multiplicative shear bias in this catalog, which we measure to be m=(−2.454±0.124)×10−2 for the full sample. Despite the significantly inhomogeneous nature of the data set, due to it being an amalgamation of various observing programs, we find the resulting catalog has sufficient quality to yield competitive cosmological constraints. 
    more » « less
    Free, publicly-accessible full text available October 22, 2026
  4. We present cosmological constraints from the Dark Energy Camera All Data Everywhere (DECADE) cosmic shear analysis. This work uses shape measurements for 107 million galaxies measured through Dark Energy Camera (DECam) imaging of 5 , 412 deg 2 of sky that is outside the Dark Energy Survey (DES) footprint. We derive constraints on the cosmological parameters S 8 = 0.791 0.032 + 0.027 and for the Λ CDM model, which are consistent with those from other weak lensing surveys and from the cosmic microwave background. We combine our results with cosmic shear results from DES Y3 at the likelihood level, since the two datasets span independent areas on the sky. The combined measurements, which cover 10 , 000 deg 2 , prefer S 8 = 0.791 ± 0.023 and under the Λ CDM model. These results are the culmination of a series of rigorous studies that characterize and validate the DECADE dataset and the associated analysis methodologies (Anbajagane et. al 2025a,b,c). Overall, the DECADE project demonstrates that the cosmic shear analysis methods employed in Stage-III weak lensing surveys can provide robust cosmological constraints for fairly inhomogeneous datasets. This opens the possibility of using data that have been previously categorized as ``unusable’’ for cosmic shear analyses, thereby increasing the statistical power of upcoming weak lensing surveys. 
    more » « less
    Free, publicly-accessible full text available October 22, 2026
  5. Free, publicly-accessible full text available September 1, 2026
  6. We present constraints on the f ( R ) gravity model using a sample of 1005 galaxy clusters in the redshift range 0.25–1.78 that have been selected through the thermal Sunyaev-Zel’dovich effect from South Pole Telescope data and subjected to optical and near-infrared confirmation with the multicomponent matched filter algorithm. We employ weak gravitational lensing mass calibration from the Dark Energy Survey Year 3 data for 688 clusters at z < 0.95 and from the Hubble Space Telescope for 39 clusters with 0.6 < z < 1.7 . Our cluster sample is a powerful probe of f ( R ) gravity, because this model predicts a scale-dependent enhancement in the growth of structure, which impacts the halo mass function (HMF) at cluster mass scales. To account for these modified gravity effects on the HMF, our analysis employs a semianalytical approach calibrated with numerical simulations. Combining calibrated cluster counts with primary cosmic microwave background temperature and polarization anisotropy measurements from the Planck 2018 release, we derive robust constraints on the f ( R ) parameter f R 0 . Our results, log 10 | f R 0 | < 5.32 at the 95% credible level, are the tightest current constraints on f ( R ) gravity from cosmological scales. This upper limit rules out f ( R ) -like deviations from general relativity that result in more than a 20 % enhancement of the cluster population on mass scales M 200 c > 3 × 10 14 M . Published by the American Physical Society2025 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  7. ABSTRACT Cosmological analyses with Type Ia Supernovae (SNe Ia) have traditionally been reliant on spectroscopy for both classifying the type of supernova and obtaining reliable redshifts to measure the distance–redshift relation. While obtaining a host-galaxy spectroscopic redshift for most SNe is feasible for small-area transient surveys, it will be too resource intensive for upcoming large-area surveys such as the Vera Rubin Observatory Legacy Survey of Space and Time, which will observe on the order of millions of SNe. Here, we use data from the Dark Energy Survey (DES) to address this problem with photometric redshifts (photo-z) inferred directly from the SN light curve in combination with Gaussian and full $p(z)$ priors from host-galaxy photo-z estimates. Using the DES 5-yr photometrically classified SN sample, we consider several photo-z algorithms as host-galaxy photo-z priors, including the Self-Organizing Map redshifts (SOMPZ), Bayesian Photometric Redshifts (BPZ), and Directional-Neighbourhood Fitting (DNF) redshift estimates employed in the DES 3 × 2 point analyses. With detailed catalogue-level simulations of the DES 5-yr sample, we find that the simulated w can be recovered within $$\pm 0.02$$ when using SN+SOMPZ or DNF prior photo-z, smaller than the average statistical uncertainty for these samples of 0.03. With data, we obtain biases in w consistent with simulations within $${\sim} 1\sigma$$ for three of the five photo-z variants. We further evaluate how photo-z systematics interplay with photometric classification and find classification introduces a subdominant systematic component. This work lays the foundation for next-generation fully photometric SNe Ia cosmological analyses. 
    more » « less
  8. Abstract We present the full Hubble diagram of photometrically classified Type Ia supernovae (SNe Ia) from the Dark Energy Survey supernova program (DES-SN). DES-SN discovered more than 20,000 SN candidates and obtained spectroscopic redshifts of 7000 host galaxies. Based on the light-curve quality, we select 1635 photometrically identified SNe Ia with spectroscopic redshift 0.10 <z< 1.13, which is the largest sample of supernovae from any single survey and increases the number of knownz> 0.5 supernovae by a factor of 5. In a companion paper, we present cosmological results of the DES-SN sample combined with 194 spectroscopically classified SNe Ia at low redshift as an anchor for cosmological fits. Here we present extensive modeling of this combined sample and validate the entire analysis pipeline used to derive distances. We show that the statistical and systematic uncertainties on cosmological parameters are σ Ω M , stat + sys Λ CDM = 0.017 in a flat ΛCDM model, and ( σ Ω M , σ w ) stat + sys w CDM = (0.082, 0.152) in a flatwCDM model. Combining the DES SN data with the highly complementary cosmic microwave background measurements by Planck Collaboration reduces by a factor of 4 uncertainties on cosmological parameters. In all cases, statistical uncertainties dominate over systematics. We show that uncertainties due to photometric classification make up less than 10% of the total systematic uncertainty budget. This result sets the stage for the next generation of SN cosmology surveys such as the Vera C. Rubin Observatory's Legacy Survey of Space and Time. 
    more » « less
  9. Abstract We presentgrizphotometric light curves for the full 5 yr of the Dark Energy Survey Supernova (DES-SN) program, obtained with both forced point-spread function photometry on difference images (DiffImg) performed during survey operations, and scene modelling photometry (SMP) on search images processed after the survey. This release contains 31,636DiffImgand 19,706 high-quality SMP light curves, the latter of which contain 1635 photometrically classified SNe that pass cosmology quality cuts. This sample spans the largest redshift (z) range ever covered by a single SN survey (0.1 <z< 1.13) and is the largest single sample from a single instrument of SNe ever used for cosmological constraints. We describe in detail the improvements made to obtain the final DES-SN photometry and provide a comparison to what was used in the 3 yr DES-SN spectroscopically confirmed Type Ia SN sample. We also include a comparative analysis of the performance of the SMP photometry with respect to the real-timeDiffImgforced photometry and find that SMP photometry is more precise, more accurate, and less sensitive to the host-galaxy surface brightness anomaly. The public release of the light curves and ancillary data can be found atgithub.com/des-science/DES-SN5YRand doi:10.5281/zenodo.12720777. 
    more » « less